Этапы развития биотехнологии как науки

Этапы развития биотехнологии как науки

Биотехнология как наука возникла на стыке биологических, химических и технологических наук.

Голландский ученый Е. Хаувинк (1984) историю био­технологии условно разделил на пять периодов (эр).

1. Допастеровская эра (до 1865).В этот период биотехнология базировалась на процессах брожения: получении пива, вина, сыра, хлеба. Опыт получения ферментированных продуктов передавался человеком из поколения в поколение на протяжении тысячелетий, хотя о причинах брожения и о том, как оно осуществля­ется, ему еще ничего не было известно. Только в XIX в. французский ученый Луи Пастер указал на специфичес­кое воздействие микроорганизмов на субстрат, что по­служило основой для изучения физиологии микробов. Он доказал, что представители микромира отличаются не только внешним видом, но и особенностями обмена веществ.

2. Послепастеровская эра (1866-1940).Именно в этот период освоение новых биологических методов определило развитие биохимии, вирусологии, генетики, цитологии, биофи­зики и других наук. Налажено производство этанола, бутанола, ацетона, глицерола, органических кислот и вакцин. Освоено производство кормовых дрожжей из углеводородов с использованием микроорганизмов, разработана аэробная очистка канализационных вод.

В.С. Буткевич и С.П. Костычев выявили общие для дыхания и брожения стадии превращения глюкозы до пировиноградной кислоты. Доказали, что органические кислоты образуются в результате жизнедеятельности грибов, что позволило создать промышленное произ­водство лимонной кислоты. С.А. Королев и А.Ф. Войткевич разработали теоретические основы сущности микробиологических процессов при выработке, хране­нии и созревании молочных продуктов, значительно расширив представление о физиологии молочнокислых бактерий. Благодаря исследованиям В.Н. Шапошнико­ва появилась возможность промышленного производ­ства молочной кислоты, органических растворителей.

3. Эра антибиотиков (1941-1960).Спустя 12 лет после открытия зеленой кистевидной плесени Penicillium notatum, продуцирующей антибио­тик, Александр Флеминг — автор открытия писал: «Не стоит трудиться ради того, чтобы получить пеницил­лин». Однако с началом Второй мировой войны возник­ла острая потребность в этом препарате. Англичане X. Флори и Э. Чейн (Оксфордский университет) полу­чили очищенный от примесей желтый порошок пени­циллина и успешно испытали его на мышах, предвари­тельно зараженных патогенными бактериями. Получение пенициллина (в 1945 г. его производство достигло уже 0,5 т) стало важ­ным этапом в становлении современной биопромыш­ленности, а главные лица (А. Флеминг, X. Флори и Э. Чейн), участвовавшие в его создании, получили в 1945 г. Нобелевскую премию.

Вместе с тем, хотя биотехнологические процессы в основном связаны с микроорганизмами, уже в эти годы не менее существенную роль сыграло использование клеток животных и растений.

С начала 50-х годов XX в. вирус полиомиелита для производства вакцины выращивается в культурах кле­ток млекопитающих. Именно в эти годы линии культур клеток человека стали незаменимыми для выделения и выращивания ряда других вирусов, при производстве вы­сокоспецифических белков (антител и интерферонов), в исследованиях рака и в противовирусной химиотерапии.

В этот же период широко используется культура рас­тительной ткани, техника которой была значительно усовершенствована в 1937 г. В том же году Р. Готре раз­работал метод культивирования недифференцирован­ной ткани моркови. Отделенный от родительского рас­тения каллюс он фрагментировал и культивировал в но­вой культуральной среде, содержащей гормон роста — ауксин. Такие культуры тканей можно сохранять в течение десятилетий. В 1954 г. в Германии получена культура из отдельных растительных клеток. Позже по­добные методы получили должное развитие. В 1957 г. специалисты добились образования у культуры корней и стеблей, предварительно обработав каллюс раститель­ными гормонами.

В 1960 г. Э. Коккинг разработал метод ферментатив­ного получения протопластов, слияние которых, минуя половое размножение, позволяет получать разнообраз­ные гибриды (соматическая гибридизация).

В 1943 г. С.Э. Лурия и М. Дельбрук определяют нали­чие настоящих мутантов и мутаций среди бактерий. Этот год является годом становления генетики бактерий зарождения, а впоследствии — развития генной инжене­рии.

Начиная с 30-х годов XX в. в Советском Союзе актив­но работают научные школы академиков Н.П.Дубини­на, С.И. Алиханяна, И.А. Раппопорта, Ю.А. Овчинни­кова, К.Г. Скрябина, Е.Д. Свердлова, И.Г. Атабекова, В.Г. Дебабова, Г.К.Скрябина и др., исследующие воп­росы генетики популяций, эволюционной, радиацион­ной и космической генетики, генетические основы селекции, различные аспекты химического мутагенеза и его применение для изучения строения гена, а также в области селекции сельскохозяйственных культур и про­мышленных микроорганизмов.

4. Эра управляемого биосинтеза (1961-1975).Производство аминокислот посредством микробных мутантов имеет наибольшее значение среди возможных способов их получения.

Советский Союз производил свыше 1 млн. т микроб­ного белка. Была создана целая микробиологическая индустрия под руководством В. А. Быкова. Это позволя­ло выпускать полноценные сбалансированные корма для выращивания птицы и скота.

Химический синтез аминокислот достаточно эффек­тивен. В нем, как правило, используется непищевое сы­рье, достигается высокая концентрация продукта, воз­можна организация непрерывного производства при высокой автоматизации. Однако наряду с преимуще­ствами синтез имеет ряд недостатков. Для его проведе­ния необходима сложная аппаратура, ему свойственна многостадийность процесса. Кроме того, в результате синтеза образуются рацемические формы аминокислот. При микробном синтезе перечисленные недостатки уст­раняются.

Не менее важным достижением биотехнологии в этот период было получение чистых ферментов, промыш­ленное использование иммобилизованных ферментов и клеток. Первые шаги в этом направлении были сделаны значительно раньше: Дж. Нельсон, Е. Гриффин (1916) адсорбировали инвертазу на угле; Дж. Пфанмюллер, Г. Шлейх (1939) для обработки шкур адсорбировали протеолитические ферменты на древесных опилках; Н. Грубхофер, Д. Шмейтон (1953) впервые применили ковалентное связывание. Термин «иммобилизованные ферменты» был узаконен в 1971 г. на первой конферен­ции по инженерной энзимологии, состоявшейся в Хенникере (США). Немалый вклад в этом направле­нии внесли советские ученые И. В. Березин, К. Мартинек, В. В. Можаев, Р. В. Петров, В. Т. Иванов и др.

Впервые с помощью биотехнологии в эти годы был получен биогаз, налажено производство бактериальных полисахаридов.

5. Эра новой биотехнологии (после 1975).Новая эра биотехнологии отсчитывает свое время с открытия Д. Уотсоном и Ф. Криком строения молекулы ДНК (1953). Только после этого началось использова­ние генной и клеточной инженерии для получения агентов биосинтеза. Главными объектами исследований становятся живая клетка и молекула ДНК. Учеными различных стран созданы искусственные генетические структуры, запрограммированные на конкретные при­знаки. Первые работы с рекомбинантными молекулами ДНК в бывш. СССР были проведены в 1974 г. группой ученых во главе с академиком А. А. Баевым, а затем получили известность труды академиков Ю. И. Овчинни­кова и М. В. Иванова и их учеников. Первые публика­ции по результатам этих работ появились в 1975 г. Со­зданы бактериальные штаммы-продуценты всех типов интерферонов, продуценты гормона роста человека и ряда сельскохозяйственных животных, проинсулина че­ловека, интерлейкина-2 и т. д.

Читайте также:  Нагорный валерий николаевич врач

Не менее важное направление, сформировавшееся в эти годы, — получение гибридов, моноклональных ан­тител, гибридов из протопластов и меристемных куль­тур, трансплантация эмбрионов. В 1975 г. Дж. Эдельман и Р. Портер путем гибридизации соматических клеток получили гибридомы, секретирующие моноклональные антитела. В Болгарии разработан метод выращивания фруктов и овощей без косточек.

Метод слияния клеток открывал возможность слить воедино даже совершенно различные микроорганизмы, включая клетки растений, животных и человека. Фузия (соматическая гибридизация) клеток, а именно так был назван метод их «слияния», создала перспективу для получения самой разной ком­бинации генов «родительских» пар. Так, клетки челове­ка, синтезирующие антитела, но неспособные к быстро­му росту и размножению, сливали с активно растущими раковыми клетками. В результате были получены новые клетки, способные к интенсивному росту и синтезу ан­тител. Поскольку результаты подобных экспериментов хотя и прогнозируемы, но не всегда предсказуемы, в 1974 г. было наложено вето на проведение эксперимен­тов, которые могли бы привести к возникновению опас­ных для человека последствий; многие из запретов поз­же удалось снять. Однако в 1975 г. было подписано меж­дународное соглашение, запрещающее разработку и внедрение «биологического оружия».

Едва развившись, дерево генной инженерии начало давать плоды. Так, выделение и внедрение генов карли­ковости обеспечило стремительное распространение по всему миру короткостебельных неполегающих сортов злаков, способных давать урожай зерна до 100 т/га. С помощью методов генной инженерии удалось создать ряд трансгенных растений (кукуруза, соя, сорго, рис, подсолнечник) и др. Одним из приоритетных направле­ний биотехнологии становится создание более продук­тивных штаммов микроорганизмов для традиционных микробиологических процессов. Интенсивно развивается новое направление в биотехнологии — иммобилиза­ция ферментов и клеток на специальных носителях, что обеспечивает многократное их использование.

Крупным международным событием стал конгресс «Биотехнология: состояние и перспективы развития», успешно прошедший в Москве в 2002 г. и приобрет­ший статус постоянно действующего. Итоги I и II (2003) Международных конгрессов по проблемам био­технологии показали явный прогресс в развитии этой науки, которая все больше приобретает отраслевое зна­чение.

Но, несмотря на эти успехи, эра новой биотехноло­гии только начинается. То, что ей подвластно, поража­ет, ибо она в состоянии изменить саму жизнь.

Объектами биотехнологических исследований являются клетки и ткани, а также биополимеры участвующие в процессах метаболизма и передачи наследственной информации.

Биотехнология сегодня развивается бурными темпами. Как наука, она изучает внедрение производственных процессов, в основе которых лежит практическое использование микроорганизмов, всевозможных биологических систем. Это не только растительные или животные ткани, но и протопласты, рекомбинантные ДНК, а также полностью генетически модифицированные организмы.

История развития биотехнологии

Глубоко в древности биотехнология развивалась эмпирическим путем: выпечка хлеба, изготовление вина, сыроварение, силосование кормов для скота – все это различные микробиологические процессы, за которыми веками велись многовековые наблюдения.

Настоящая же генная инженерия, биотехнология, как современный вид науки, начала развиваться только лишь в середине прошлого столетия.

Основные этапы и периоды развития биотехнологии

История развития биотехнологии условно делится на три последовательных этапа. Первый – это развитие биотехнологии в разрезе исторического аспекта.

При раскопках древних поселений в Месопотамии, в Египте, а также Греции были обнаружены остатки больших и малых пекарен и пивоварен.

Известно, что уже шумеры умели делать пиво, причем ассортимент его был довольно широк (около двадцати различных сортов). На территории Древней Греции и Римской империи было активно развито виноделие и производство сыра.

Изготовляли и льняное волокно, этот процесс происходит с участием микроскопических грибов и бактерий.

В конце девятнадцатого века развитие биотехнологии вступило во второй этап, она начала развиваться, как наука. Появились первые ученые генетики, микробиологи и вирусологи.

В начале прошлого века были созданы первичные установки по производству метана. Отходы сельскохозяйственного производства превращались в биологический газ и органическое удобрение.

В середине двадцатого века начали производить антибиотики, как следствие, появились предприятия, которые с помощью микроорганизмов не только аминокислоты и витамины, но и органические кислоты, а также ферменты.

В конце двадцатого века развилась генная и клеточная инженерия, что ознаменовало третий этап развития биотехнологии. Фактическим «днем рождения» этого вида современной науки считают 1972-ой год, время создания первой гибридной ДНК, в которую встроили чужеродные гены.

Итак, биотехнология, как постоянно и динамично развивающаяся наука, охватывает несколько больших периодов. Первый их них – конец 19-го и начало двадцатого века. Это было время первых великих свершений, таких, как открытие структуры белков или применение вирусов при изучении генетики клеточных организмов.

Во втором периоде биотехнология сформировалась, как научно-техническая отрасль, уже производящая препараты. Наконец, в третьем периоде начала развиваться генная и клеточная инженерия.

Основные направления развития биотехнологии

Основа биотехнологии – это генетическая (клеточная) инженерия и биохимия. Развитие клеточной инженерии считается на данный момент одним из самых перспективных направлений.

Ученые проводят культивирование клеток микроорганизмов, растений и животных, осуществляются такие манипуляции, как слияние клеток либо пересадка органоидов.

Основными направлениями развития биотехнологии считаются:

  • создание новых видов продуктов питания и животных кормов, производство их;
  • выведение новых штаммов полезных микроорганизмов;
  • создание новых пород животных;
  • выведение новых сортов растений;
  • создание и применение препаратов по защите растений от болезней и вредителей;
  • применение новых биотехнологических методов по защите окружающей среды.
Читайте также:  Медулла облонгата

Кроме этого, активно развивается направление биологически активных соединений с помощью микроорганизмов и культивируемых эукариотических клеток. Сюда входят ферменты, витамины, а также гормоны и антибиотики.

Значение биохимии для биотехнологии

Биотехнология как наука на современном этапе является синтезом разделов биохимии в соединении с генной инженерией. Например, на данный момент ведутся активные исследования в области экологической биотехнологии, но самая большая роль биохимии в развитии биотехнологий – создание новых методов производства продуктов питания.

Дело в том, что почти любая технология по производству пищевых продуктов основана на биохимических процессах.

Поэтому изучение процесса обмена веществ в живой клетке – актуальный вопрос для развития биотехнологии. Это имеет большое значение не только для животноводства и растениеводства или переработки промышленным способом сельскохозяйственного сырья, но и для медицины, а также экологии.

Состояние и перспективы развития биотехнологии в современном мире

Современная биотехнология привлекает внимание инвесторов не только в нашей стране, но и во всем мире. Эксперты и аналитики прогнозируют, что биотехнологии станут самым динамично развивающимся и самым прибыльным бизнесом нынешнего, XXI века.

Быстрыми темпами развиваются такие отрасли, как современные биологические методы защиты культурных растений, биоэнергетика и биодеградируемые полимеры, а также природоохранные биотехнологии. Ведутся научные работы по созданию новых биополимеров, в будущем они могут заменить ныне популярные ныне пластмассы.

Биополимеры имеют большое преимущество в сравнении с пластмассами, так как они нетоксичны и могут разлагаться после их применения, не загрязняя при этом окружающее пространство.

Конструирование необходимых генов даст возможность управлять жизнедеятельностью не только растений, но и животных, создавать новые организмы с иными свойствами.

Чем объясняется бурное развитие биотехнологии

Современные биотехнологии сыграют большую роль в качественном улучшении жизни человека, развитию экономического роста стран. Посредством биотехнологий получают новые средства для диагностики, вакцины, продукты питания, лекарства.

Биотехнология помогает в увеличении урожайности всех злаковых культур, что более чем актуально, принимая во внимание рост численности населения нашей планеты.

В некоторых странах, где значительные объемы биомассы не используются полностью, биотехнология в обозримом будущем превратит их в ценные продукты или в биологические виды топлива. Биотехнология все больше перестает быть прикладной наукой, она активно входит в обычную жизнь людей, помогая решать насущные проблемы современного человечества.

Развитие биотехнологий в России

Когда говорят о развитии биотехнологий в России, приходится учитывать длительный период упадка и деградации научных учреждений. Сейчас, после нескольких лет интенсивного роста, российские биотехнологии представлены на мировом рынке в количестве 0,1%, а в 1885 году СССР имел долю 5% на рынке продукции, относимой к биотехнологиям. Это медицинские препараты, ферменты, гормональные препараты, чистые линии микроорганизмов, используемых в научных исследованиях, сельскохозяйственном производстве и очистке окружающей среды от вредных отходов.

Интересна судьба самого громкого и скандального проекта, ставшего достоянием гласности в конце восьмидесятых. Это БВК, белково-витаминные концентраты, получаемые из парафинов нефти при использовании специально выведенных бактериальных культур.

В прессе был поднят шум, тему обсуждали эмоционально, общественность требовала закрытия «вредного проекта». Однако работа была уже сделана – бактерии, питающиеся нефтепродуктами, существовали.

Для них нашлась полезная функция: очистка воды и земли от разлившейся нефти. Сейчас вода в морских и речных портах содержит значительно меньше нефтепродуктов, чем в 70-80 годы, благодаря их биологическому разложению.

При помощи прожорливых бактерий очищают территорию на предприятиях от мазута и других нефтепродуктов. Трудно переоценить пользу от этих микроорганизмов – ведь нефтяная пленка в двадцатом веке грозила погубить моря и океаны!

Производство белковой продукции из нефти не было поставлено на поток, но польза от данной биотехнологии несомненна!

В 2012 году российское правительство значительно увеличило государственное финансирование научных исследований в этой отрасли.

Интересно, что ряд проектов осуществляется на общественные пожертвования. К таким проектам относится исследование микрофлоры кишечника и на основе результатов — научно разработанные рекомендации по питанию, физическим нагрузкам, образу жизни. Эта тема популярна в России и в мире.

Этические аспекты развития биотехнологии

Перспективы развития биотехнологий поражают воображение, а в ряде случаев вызывают страх и у людей. По поводу тех или иных исследований периодически разгораются дискуссии, и противники генной инженерии, клонирования организмов или исследования человеческого генома неоднократно требовали запретить все работы в этом направлении. Примером общественных протестов служит упоминавшаяся технология БВК.

Много страстей кипело вокруг генной инженерии. Люди опасались появления уродливых, непредсказуемых, всемогущих существ, созданных путем комбинации генов от несовместимых в природе видов. Фантастические произведения и фильмы способствовали распространению страхов.

Были и научно обоснованные возражения: генетически модифицированные организмы не изучены, употребление кукурузы и сои с модифицированными генами может вызвать болезни. В результате в Европе и России запрещено выращивание и использование ГМО.

Развитие биотехнологии и генной инженерии в современной науке

Биотехнологии и генная инженерия, более чем все остальные, связана с фундаментальными научными исследованиями. Создание организмов с «заданными параметрами», лечение генетически обусловленных болезней, производство белковой массы вне организма, внедрение в организм «биологических чипов», влияющих на жизнедеятельность – все эти направления нуждаются в дорогостоящих исследованиях, сложном оборудовании и высококвалифицированных специалистов.

На стыке двадцатого и двадцать первого века был задуман и осуществлен грандиозный проект – прочитан геном человека. Это был большой труд, в котором участвовало много лабораторий в разных странах мира. Одним из продуктов этих исследований стало появление технологии идентификации личности по ДНК, получение информации о родстве (установление отцовства). Но от прочтения генома ученые ожидали большего. Информация, зашифрованная в ДНК, огромна и ее изучение, расшифровка еще сложнее, чем процедура исследований.

Читайте также:  Боль в левом боку в области паха

Вклад биотехнологии в развитие медицины

Одним из «подарков дьявола» считалась возможность определения по ДНК генетически запрограммированных болезней. С одной стороны, это возможность предупредить человека об опасностях, но такая информация сама по себе травматична, и способна провоцировать болезни.

Однако «предопределенность» болезней оказалась отнюдь не абсолютной. У вполне здоровых пожилых людей при исследовании обнаруживаются гены болезней, от которых они должны давно умереть. Хотя наследственность никто не отменял, как и генетическую предрасположенность к тем или иным заболеваниям.

Сейчас идет речь не о том, чтобы просто получать информацию о будущих болезнях, но о том, что есть возможность исправлять дефектные участки ДНК. И это было бы прекрасно – ведь накопление генетических ошибок в человеческом сообществе способствует деградации вида гомо сапиенс.

Проблемы биотехнологии

Сейчас возникают споры о генной медицине, о клонировании организмов, об этических вопросах исследования стволовых клеток. На повестке дня – «биопринтер», при помощи которого признается возможным выращивание органов для трансплантации.

На исследования в этом направлении направляются огромные средства, прежде всего в США. Одновременно возникают опасения: вдруг возникнет тенденция выращивания клонов в качестве «идеальных доноров»?

Впрочем, на пути многих амбициозных и не слишком щепетильных в нравственном отношении проектов возникают препятствия, положенные самой природой.

Фантастические успехи от применения стволовых клеток для лечения и омоложения – и их перерождение в злокачественные опухоли; рождение клонированных животных – и их ранняя смерть, слабое здоровье.

Живая материя по-прежнему непостижима, несмотря на успехи в ее познании, и пределы человеческого вмешательства в ее основы — ограничены.

Развитие биотехнологии до 2020

Перспективы биотехнологии на ближайшее будущее можно разделить на рекламные и научно обоснованные. К широко разрекламированным проектам относятся, например, «таблетки молодости» — их обещают выпустить на рынок как раз к 2020 году. Однако скептики говорят, что таких сенсаций было много, начиная со времен алхимии…

Более реалистично выглядит 3D принтер, наносящий клеточные культуры на матрицу с питательным раствором, и формирующий искусственные органы. Еще один медицинский проект – лечение тяжелых ожогов путем нанесения на пораженный участок стволовых клеток, которые в считанные дни образуют новую кожу.

Генетический ремонт – направление, которое развивается и будет развиваться, и в него инвестируются большие деньги.

Компании, занимающиеся биотехнологиями

Лидерами в области биотехнологий являются фармацевтические фирмы США, Китая, Индии, Европы.

Биотехнологии условно подразделяют на группы:

  • красная биотехнология – связанная с медициной и «лечением» генетического кода, на рынке биотехнологий ей принадлежит доля более 70%;
  • зеленая – генная инженерия, работающая для сельского хозяйства;
  • белая – производство биотооплива;
  • серая – защита экологии, борьба с отходами;
  • синяя – использование биологических ресурсов океана.

Лидеры «красной биотехнологии» — американские фирмы Genentech, Novartis, Merck&Co, Pfizer, Johnson & Johnson, Sanofi.

В области разработки и производства ГМО лидирует транснациональная компания Monsanto Company.

Белая, серая, синяя биотехнологии существенно отстают от лидеров. Их полезная деятельность дает не слишком быстрый экономический эффект, поэтому в списках лидеров они не значатся.

Биотехнология. Наука биотехнология. Этапы развития биотехнологии.

Биотехнология [от греч. bios, жизнь, + techne, мастерство] — наука, изучающая производственные процессы, основанные на использовании с различными целями микроорганизмов, биокатализаторов и различных биологических систем (культур растительных и животных тканей, протопластов и т.д.). Её отличие от традиционной микробиологической и бродильной промышленности заключается в том, что биотехнология возникла на основе достижений генной инженерии и инженерной эн-зимологш (науки о применении ферментов в микробиологической промышленности). Современная биотехнология базируется на применении последних достижений в области создания рекомбинантных ДНК и генетически модифицированных организмов.

Этапы развития биотехнологии

Истоки биотехнологии относят ко времени развития хлебопечения, виноделия, сыроварения, получения спирта брожением, силосования кормов и т.д. Лишь в 70-х годах XX столетия, со времени зарождения генной инженерии, началось бурное развитие биотехнологии. Выделяют следующие наиболее важные периоды в становлении биотехнологии.

• Развитие эмпирической технологии — неосознанное применение микробиологических процессов (хлебопечение, виноделие) примерно с VI тыс. до н.э.

• Зарождение фундаментальных биологических наук в XV—XVIII веке.

• Первые внедрения научных данных в микробиологическое производство в конце Х1Х-начале XX века — период революционных преобразований в микробиологической промышленности.

• Создание научно-технических предпосылок возникновения современной биотехнологии в первой половине XX века (открытие структуры белков, применение вирусов в изучении генетики клеточных организмов).

• Возникновение собственно биотехнологии как новой научно-технической отрасли (середина XX века), связанное с массовым рентабельным производством препаратов; организация крупнотоннажных производств по получению белка на углеводородах (с начала 60-х годов).

• Появление новейшей биотехнологии, связанное с применением в практике генной и клеточной инженерии, инженерной энзимоло-гии, иммунной биотехнологии.

11) Кто такие прокариоты

Прокарио́ты (лат.Procaryota, отдр.-греч.προ «перед» и κάρυον «ядро»), или доя́дерные — одноклеточныеживыеорганизмы, не обладающие (в отличие отэукариот) оформленнымклеточным ядроми другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, уцианобактерий). Дляклетокпрокариот характерно отсутствиеядерной оболочки,ДНКупакована без участиягистонов. Тип питанияосмотрофныйи автотрофный (фотосинтез и хемосинтез). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекулаДНК, в которой содержится основная часть генетического материала клетки (так называемыйнуклеоид) не образует комплекса с белками-гистонами(так называемогохроматина). К прокариотам относятсябактерии, в том числецианобактерии(синезеленые водоросли) иархеи. Потомками прокариотических клеток являютсяорганеллыэукариотических клеток —митохондрииипластиды.

Прокариоты разделяют на два таксона в рангедомена(надцарства):Бактерии(Bacteria) иАрхеи(Archaea)[1].

Изучение бактерий привело к открытию горизонтального переноса генов, который был описан в Японии в 1959 г. Этот процесс широко распространен среди прокариот, а также у некоторых эукариот. Открытие горизонтального переноса генов у прокариот заставило по-другому взглянуть на эволюцию жизни. Ранее эволюционная теория базировалась на том, что виды не могут обмениваться наследственной информацией. Прокариоты могут обмениваться генами между собой непосредственно (конъюгация,трансформация) а также с помощью вирусов —бактериофагов(трансдукция).

Ссылка на основную публикацию
Эскапел отзывы гинекологов и последствия
Кафедра акушерства и гинекологии ММА им. И.М. Сеченова, Москва Одной из актуальных проблем современной гинекологии является охрана репродуктивного здоровья женщины....
Эпиляция воском чистые пруды
Где сделать эпиляцию метро Чистые пруды ДостоинстваПриветливый персонал и профессиональные мастера КомментарийМастер Миран сделал мне потрясающий цвет! Очень довольна результатом!...
Эпиляция интимной зоны у мужчин
Мужская депиляция – это запретная тема для большинства представителей сильного пола, которые гордятся своей первозданной красотой и мужественностью. Конечно, депиляция...
Эскузан описание
Фарма Вернигероде ГмбХ Товары из категории - Венотонизирующие препараты Twins Tec [Твинс Тэк] Инструкция по применению Описание препарата Инструкция по...
Adblock detector